

12th 2026 International Conference on Control, Decision and Information Technologies

July 13-16, 2026 Bari, Italy

CALL FOR PAPERS - SPECIAL SESSION “Data-Driven and AI-Based Methods for Control and Optimization in 6G Systems” for CODiT 2026 July 13-16, 2026 • Bari, Italy

Organizer(s)

Regis Decorme, R2M Solution, Roquefort-les-Pins, France - Email: regis.decorme@r2msolution.com

Maria Pia Fanti, Polytechnic University of Bari, Italy - E-mail: mariapia.fanti@poliba.it

Sébastien Faye, Luxembourg Institute of Science and Technology, Luxembourg - E-mail: sebastien.faye@list.lu

Gaetano Volpe, Polytechnic University of Bari, Italy - E-mail: gaetano.volpe@poliba.it

Keywords

6G, Artificial intelligence, Optimization, Machine learning, Reinforcement learning

Session description:

The evolution toward sixth generation (6G) communication networks introduces unprecedented demands on performance, adaptability, and intelligence across heterogeneous and highly dynamic infrastructures. Envisioned 6G systems will support ultra-reliable low-latency communication, massive connectivity, integrated sensing and communication, and energy-efficient operation at scale. Meeting these requirements calls for new paradigms in modeling, optimization, and control that can handle complexity, uncertainty, and fast-varying network conditions.

Artificial intelligence—especially machine learning, deep learning, and foundation-model-based approaches—has emerged as a core enabler of autonomous and self-optimizing 6G networks. Data-driven models allow for predictive resource allocation, proactive network management, robust control under uncertainty, and real-time orchestration of distributed network functions. At the same time, theoretical advances in learning-enabled control, optimization, and generalization are essential for guaranteeing reliability, safety, and interpretability in mission-critical 6G applications.

This special session brings together recent progress in AI-based methods for modeling, control, and optimization in next-generation communication infrastructures. It highlights contributions that bridge data-driven learning with control-theoretic foundations, address the challenges of scalability and security, and advance the autonomy and performance of future 6G systems.

Sub-topics (include but are not limited to):

- AI-enabled modeling and prediction for 6G networks
- Learning-based control and optimization for radio access and core networks
- Resource allocation, scheduling, and network slicing using ML/AI
- Reinforcement learning for autonomous network management and orchestration
- Integration of foundation models and large-scale neural architectures in 6G control
- Robustness, reliability, and safety of AI-driven control in communication systems
- AI-based methods for joint communication, sensing, and computation
- Security, privacy, and adversarial resilience in learning-enabled network control
- Applications in edge/cloud computing, IoT, vehicular and aerial networks, and cyber-physical 6G platforms

SUBMISSION

Papers must be submitted electronically for peer review through PaperCept by **February 07, 2026:** <http://controls.papercept.net/conferences/scripts/start.pl>. In [PaperCept](#), click on the **CoDIT 2026** link “Submit a Contribution to CoDIT 2026” and follow the steps.

IMPORTANT: All papers must be written in English and should describe original work. The length of the paper is limited to a maximum of 6 pages (in the standard IEEE conference double column format).

DEADLINES

February 07, 2026: deadline for paper submission

April 30, 2026: notification of acceptance/reject

May 20, 2026: deadline for final paper and registration